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By using an algebraic diagonalization method, the XYZ Heisenberg antiferromagnetics
under an external magnetic field is studied in the framework of spin-wave theory. The
energy eigenstates are shown to be squeezed number states and the energy eigenvalues
are obtained in some cases. Some quantum properties of the energy eigenstates, and
the connection of the model with the two-mode coupled harmonic oscillators are also
discussed.
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1. INTRODUCTION

The Heisenberg model (Anderson 1951; Heisenberg, 1928), describing spin
lattices with short-range interactions, plays an indispensable role in the study of
the magnetism of solids, and many other related physical fields, such as non-local
spin systems, quantum dot, nuclear spin, and so on (Burkard, 1999; Imamoglu,
1999; Loss, 1988). According to the sign of interaction intensity J , this model can
be classified as ferromagnetic (J > 0) type and antiferromagnetic (J < 0) type,
the latter is much complicated than the former in the eigenstate structure. Based
on the interaction intensity along different space directions, the Heisenberg model
can be classified as XXX, XXZ, XYZ, where the former two cases can be regarded
as the special case of the latter one. In theoretical study, a basic task is to do the
digonalization of the Hamiltonian. However, due to the complicacy of the many
body problem, getting the exact solution is very difficult, and till now only some
special cases can be exactly solved, such as one dimension XXX antiferromagnetic
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chain using the Bethe-Ansatz method (Bethe, 1930). In practice, the spin-wave
theory is widely employed as an acceptable approximation, and the “Néel states”
is regarded to be the approximate ground states of the antiferromagnetic case. For
XXZ antiferromagnetic Heisenberg model, spin-wave theory has been well studied
in an analytical way which can be found in standard textbooks (Callaway, 1976).
However, for XYZ case, as far as we know, there is no result parallel to XXZ case
in literature. The reason lies in that, although it’s not very difficult in principle to
deal with the problem through the traditional Bogoliubov-valatin transformation
(Bogoliubov, 1958; Valatin, 1958), the solution form is too complicated, to be
intuitive in physics, and one have to rely on pure numerical analysis, leading to
the lack of physical transparency.

As is well known, algebraic method is very important in studying the system
with certain dynamical group (Artoni, 1991; Kim, 1988; Pan, 2001, 2004). In this
paper, an algebraic diagonalization method will be employed to do the digonal-
ization of XYZ antiferromagnetics under an external magnetic field in spin-wave
framework. The energy eigenstates which turn out to be squeezed number states
(Nieto, 1997; Kim, 1989; Yuen, 1976) and the corresponding eigenvalues in some
cases will be obtained. The paper is organized as follows. Firstly, the algebraic
diagonalization method is briefly introduced in Section 2. In Section 3, we study
the system and give the result of eigenstates and eigenvalues in some cases. The
relation between algebraic method and Bogoliubov method is also discussed. In
Section 4, we discuss some statistical properties of the eigenstates. In Section
5, we investigate the relation of the system and the two-mode coupled harmonic
oscillators. Finally, some concluding remarks are given.

2. AN ALGEBRAIC DIAGONALIZATION METHOD

The algebraic diagonalization method introduced here is applicable for a class
of rather general systems whose Hamiltonian possesses dynamical semisimple
Lie-algebra structure, i.e.

H =
∑

i

εiHi +
∑

α

(λαEα + λ∗
αE−α), (1)

where {Hi , Eα , E−α} is the standard Cartan-Weyl basis of a semi-simple Lie
algebra g satisfying the standard commutation relations.

Based on the Lie algebra g, we introduce a unitary operator

W (ξ ) = exp

[
∑

α>0

(ξαEα − ξ ∗
αE−α)

]
, (2)

in which ξα denote parameter functions to be determined. In fact, operator W (ξ )
is a generalized displacement operator in the coset space G/H (Zhang, 1990).
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Utilizing the Baker-Campbell-Hausdorff (B-C-H) formula

eABe−A = B + [A,B] + 1

2!
[A, [A,B]] + . . . ,

and taking advantages of the standard commutation relations of semisimple Lie
algebra g, the following identities can be obtained

W (ξ )−1GjW (ξ ) =
∑

i

γij (ξ )Gi, (3)

where Gj stand for the generators Hi and E±α , ξ denotes the set of {ξα}, γij (ξ ) are
parameter functions. This is a central step in the overall treatment of the problem.
Equation (3) can directly be rewritten into the following form

W (ξ )−1HW (ξ ) =
∑

i

ηi(ξ, ε, λ)Hi +
∑

α>0

[(µα(ξ, ε, λ)Eα + µ∗
α(ξ, ε, λ)E−α].

(4)
The non-Cartan generators E±α in the right-hand side are not diagonal and

can be eliminated through setting

µα(ξ, ε, λ) = 0 (5)

for all parameters α which give constraints to the parameter-functions {ξα} and
the parameters ε, λ. Then we get

HW (ξ ) | Ref >= W (ξ )
∑

i

ηi(ξ, ε, λ)Hi | Ref > . (6)

Here | Ref > denote the reference states required to be the common eigen-
states of all Hi . Therefore,

∑
i ηi(ξ, ε, λ)Hi can be substituted by functions acting

on the reference states, i.e.,

HW (ξ ) | Ref >= ω(ξ, ε, λ, Ref )W (ξ ) | Ref > . (7)

This is the eigen-equation of Hamiltonian Equation (1), thus the algebraic
diagonalization have been accomplished. State W (ξ ) | Ref > and ω are the energy
eigenstates and eigenvalues of corresponding system, respectively.

Now we briefly illuminate the completeness of the solution. For related
fundamental introduction, please see reference (Zhang, 1990, pp. 877–879). In
fact, the state | Ref > and the operator W (ξ ) here correspond to the state | �,� >

(the common eigenstate of Hi) and the displacement operator 	 in that reference,
respectively. So, eigenstates W (ξ ) | Ref > correspond to states | �,	 > in that
reference which play the role of complete basis of state space.
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3. SQUEEZED NUMBER EIGENSTATES OF XYZ ANTIFERROMAG-
NETICS UNDER AN EXTERNAL MAGNETIC FIELD

The Hamiltonian of XYZ Heisenberg antiferromagnetics under an external
magnetic field B = Bêz (along z axis) is described by

H = −J
∑

〈i,j〉

(
ηxS

x
i Sx

j + ηyS
y

i S
y

j + Sz
i S

z
j

) +
∑

i

B · Si (J 〈0, ηx, ηy〉0). (8)

where the notation 〈i, j 〉 denote the nearest neighbor bonds. We employ the
traditional two-sublattice treatment, i.e., the spin directions are upwards for sites
on sublattice A and downwards for sublattice B, and then apply Holstein-Primakoff
transformation (Holstein, 1949):

Sz
a = −s + a†a, sz

b = s − b†b,

S†
a = (2s)1/2a†(1 − a†a/2s)1/2, S

†
b = (2s)1/2(1 − b†b/2s)1/2b, (9)

S−
a = (S†

a )†, S−
b = (S†

b )†,

where a†, a (b†, b) can be regarded as the creation and annihilation operators of
boson on sublattice A (sublattice B). The particle numbers a†a, b†b can’t exceed
2s.

In low temperature and low excitation condition, 〈a†a〉, 〈b†b〉 � s, so the
non-linear interaction in Hamiltonian Equation (8) can be reasonable ignored
(Kittel, 1963). Based on this “big s” approximation, transforming the operators
into momentum space, and leaving out the biquadratic terms, we get

H = 2zsJ

[
Ns − 1

2

(
∑

k

Hk − 1

)]
, (10)

Hk = a
†
kak + a

†
−ka−k + b

†
kbk + b

†
−kb−k + υk(akb

†
−k + a−kb

†
k + a

†
kb−k + a

†
−kbk)

+ ρk(akbk + a
†
kb

†
k + a−kb−k + a

†
−kb

†
−k) + µ(b†kbk − a

†
kak

+ b
†
−kb−k − a

†
−ka−k), (11)

with

υk = ηx − ηy

2
γk, ρk = ηx + ηy

2
γk, γk = 1

z

∑

R

eik·R, µ = B

2zsJ
.

(12)
Here R is a vector connecting an atom with its nearest neighbor, and the sum

runs over the z nearest neighbors. k is restricted in the Brillouin zone. 2N is total
number of the lattices.
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Hk can be expressed as the linear combination of six generators of Lie algebra
so(3, 2), i.e.,

Hk = Ek
3 + µF k

3 + ρk(Ek
+ + Ek

−) + υk(F k
+ + F k

−), (13)

where the generators take the following forms

Ek
+ = a+

k b+
k + a+

−kb
+
−k, F k

+ = akb
+
−k + a−kb

+
k ,

Ek
− = akbk + a−kb−k, F k

− = a+
k b−k + a+

−kbk, (14)

Ek
3 = 1

2
(na

k + na
−k + nb

k + nb
−k + 2), F k

3 = 1

2
(nb

k + nb
−k − na

k − na
−k).

The other four generators of so(3, 2) are

Uk
+ = b+

−kb
+
k , Uk

− = bkb−k, V k
+ = a+

−ka
+
k , V k

− = aka−k. (15)

The non-vanishing commutation relations of this algebra read

[E+, E−] = −E3, [E3, E±] = ±E±,

[F+, F−] = F3, [F3, F±] = ±F±,

[E3, U±] = ±U±, [F3, U±] = ∓U±,

[E3, V±] = ±V±, [F3, V±] = ±V±,

[E±, V∓]=∓F∓, [F±, U±]=±E±,

[E±, F±] = ∓V±, [V+, V−] = −(E3 + F3),

[F±, V∓]=∓E∓, [E±, U∓]=∓F±,

[E±, F∓] = ∓U±, [U+, U−]= −(E3 − F3).

One can see that {Ek
+, Ek

−, Ek
z } forms an so(2, 1) ≈ su(1, 1) subalgebra,

while {F k
+, F k

−, F k
z } forms an so(3) ≈ su(2) one. When ηx = ηy , the system will

reduce to the su(1, 1) case (Xie, 2002).
Hamiltonian Equation (13) possesses the form of Equation (1), then one

can do the diagonalization of Hamiltonian Equation (13) through the algebraic
diagonalization method introduced in Section 2. Note that the reference state
| Ref > is required to be the common eigenstate of Ek

3 and Fk
3 , | Ref > should

take the form of number state | nk
a, n

k
b >. So, the eigenstates W (ξ ) | Ref > are

revealed to be squeezed number state, which had been studied in quantum optics
field (Kim, 1989; Nieto, 1997; Yuen, 1976).

In the calculation process of the diagonalization, we found that, if a general
full-parameter W (ξ ) is set, the infinite progressions induced by the B-C-H formula
can’t replaced by analytical functions. This lead to huge difficult even for number
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calculation. For the purpose of studying the formal analytical solutions and the
general property of the squeezed number eigenstate, we set

W (r, θ ) = exp{r[cos θE+ + sin θ (V+ − U+) − h.c.]}. (16)

Utilizing the commutation relations of so(3, 2) and the B-C-H formula, after a
lengthy calculation, we get

W †(r, θ)HkW (r, θ ) = ωk
EE3 + ωk

F F3, (17)

where

ωk
E = cosh 2r + ρk cos θ sinh 2r, (18)

ωk
F = µ(1 + 2 sin2 θ sinh2 r) + υk sin 2θ sinh2 r, (19)

with the constraint equations

cos θ sinh 2r + ρk(cosh2 r − cos 2θ sinh2 r) = 0, (20)

µ sin 2θ sinh2 r + υk(cosh2 r + cos2 θ sinh2 r) = 0, (21)

µ sin θ sinh 2r + ρk sin 2θ sinh2 r − υk cos θ sinh 2r = 0. (22)

The role of these equations is to eliminate the non-Cartan generators appear-
ing originally on the right-side of Equation (17). Note that there are 5 parameters
in Equations (20)–(22), so one of the parameters ρk, υk, µ should be not indepen-
dent. Acting both sides of Equation (17) on reference number state |nk

a, n
k
b〉, we

get

Hk|Rk >=
(

ωk
an

k
a + ωk

bn
k
b + 1

2
ωk

E

)
|Rk >, (23)

where

|Rk >= W (rk, θk)|nk
a, n

k
b〉, (24)

ωk
a = ωk

E + ωk
F

2
, ωk

b = ωk
E − ωk

F

2
. (25)

Equation (23) is the eigen-equation. The squeezed number state
W (rk, θk)|nk

a, n
k
b〉 is the eigenstate of the system, and ωk

a and ωk
b are the ener-

gies of the two different magnons respectively. It is shown that the magnetic field
lift the magnon degeneracy. In the study of the number calculation, we find usu-
ally their exist several solutions, but only one solution give real energy eigenvalue.
For instance, in a special case the reasonable solution is, ρ = 0.1, υ = −0.0006,
µ = 0.0383, θ = 1.2506, r = −0.1636, ωa = 0.5418, ωb = 0.5017.

Now we discuss the relation between the algebraic diagonalization method
used here and the traditional Bogoliubov-Valatin transformation. To a certain
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extend, these two methods are equivalent. The Bogoliubov-Valatin unitary trans-
formation is known to acts on single creation or annihilation operator. In our case,
the Lie algebra generators are composed of the quadratic form of the creation and
annihilation operators. So, the unitary transformation acted on the Lie algebra gen-
erators corresponds to the product of two unitary transformations acting on single
creation or annihilation operator respectively. This fact connects the two methods,
and leads to that the eigenvalues should be the same and the energy eigenstates can
be connected through considerable transformation. In fact, the unitary operator
W (r, θ ) (Equation (16)) provides a two-mode squeezing transformation,

αk = W−1(r, θ )akW (r, θ ) = ak cosh r + (cos θb
†
k − sin θa

†
k ) sinh r, (26)

βk = W−1(r, θ )bkW (r, θ ) = bk cosh r + (cos θa
†
k + sin θb

†
k ) sinh r. (27)

Here αk and βk are new bosonic operators. In fact, the anti-transformation
of Equations (26) and (27) can just be regarded as a corresponding Bogoliubov
transformation. For briefness, we would not write them out here. The squeezed
number form is (ωk

an
k
a + ωk

bn
k
b + 1

2ωk
E)W (rk, θk)|nk

a, n
k
b〉, where the nk

a, n
k
b are the

eigenvalues of the particle number operators of a
†
k ak, b

†
kbk . The corresponding Bo-

goliubov form is [ωk
α(α†

kαk + 1
2 ) + ωk

β(β†
k βk + 1

2 )]|0, 0〉, where the αk and βk is the
bosonic operators of the quasi-particles. It’s apparent that the two methods work in
different operator space, one is for “quasi-particle,” the other is for “real particle.”

4. SOME STATISTICAL PROPERTIES OF EIGENSTATE

In this section, we discuss some statistical properties of the eigenstate as
squeezed number state. The average magnetization of sublattice A and B take the
forms

〈
sz
B

〉 = Ns −
∑

k

〈b†b〉k, (28)

〈
sz
A

〉 = −Ns +
∑

k

〈a†a〉k, (29)

where,

〈b†b〉k = 1

2
cosh 2r

(
nk

a + n−k
a + nk

b + n−k
b + 2

) + 1

2
(1 + 2 sin2 θ sinh2 r)

× (
nk

b + n−k
b − nk

a − n−k
a

) − 1,

〈a†a〉k = 1

2
cosh 2r

(
nk

a + n−k
a + nk

b + n−k
b + 2

) + 1

2
(1 + 2 sin2 θ sinh2 r)

× (
nk

a + n−k
a − nk

b − n−k
b

) − 1.
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When the particle numbers nk
a and nk

b vanish, the eigenstate becomes squeezed
vacuum state. In this state,

〈b†b〉k = 〈a†a〉k = cosh 2r − 1. (30)

One can see, even in the squeezed vacuum state, i.e., the ground state, the
spin direction of different sites on a sub-lattice is not necessarily the same; this
property of disordering has relations with the zero-point motion of the magnon
in fact. Moreover, in the squeezed vacuum state, the influence of the external
magnetic field upon the agree of average spin reversal of the two sub-lattice is
inviolable the same; while in other squeezed number states, this property becomes
true only in the condition that nk

a + n−k
a = nk

b + n−k
b .

Now we study the other quantum effects from the point view of quantum
optics. For simplicity, hereafter only squeezed vacuum state is mentioned. The
second-order correlation functions of the two excitation modes can be readily
obtained as

gk
b

(2) = gk
a

(2) =
〈
a
†
k

2
ak

2
〉

〈a†
kak〉2 = 2 + sin θ coth2 r, (31)

gk
ab

(2) = 〈a†
kakb

†
kbk〉

〈a†
kak〉〈b†kbk〉

= 1 + 2 cos θ coth2 r. (32)

The Mandel Q parameters (Mandel, 1979, 1986) read

Qk
b = Qk

a = 〈(�a
†
kak)2〉

〈a†
kak〉

− 1 = sinh2 r + sin θ cosh2 r. (33)

Equation (33) illustrates that in squeezed vacuum state, each of the three
statistics, sub-Poissonian (Q > 0), Poissonian (Q = 0), super-Poissonian (−1 ≤
Q < 0, nonclassical state) are all possible to exist in the two magnon modes,
relying on the values of the parameters r and θ , which are determined by the
parameters υk, ρk, µ.

If the parameter I k =
√

gk
b

(2)
gk

a
(2)

/gk
ab

(2) − 1 < 0, then the Cauchy-Schwartz
inequality (CSI) (Agarwal, 1988) is violated, and the correlation between the two
k-magnon modes is nonclassical. In squeezed vacuum state,

I k = 1 + (sin θ − 2 cos θ ) coth2 r

1 + 2 cos θ coth2 r
, (34)

it can be found that larger squeezing parameter r leads to smaller possibility of
the violation of CIS, i.e. the achievement of nonclassical correlation. This is not
surprising since larger squeeze parameter r corresponds to larger particle number,
tending to approaching classical case.



Squeezed Number Eigenstate of XYZ Heisenberg 2425

5. CONNECTION WITH THE TWO-DIMENSION COUPLED
HARMONIC OSCILLATORS

For two different physical systems, if their Hamiltonian can be written into
the same combination of the generators of a Lie algebra completely through
different realizations of this Lie algebra, it’s reasonable to believe that the two
systems possess the same eigenvalue structure. Now we consider the relation of
XYZ antiferromagnetic Heisenberg model under an external magnetic field and
two-dimension coupled harmonic oscillators. Since the so(3, 2) algebra can also
be constructed in the form

E+ = a
†
1a

†
2 , E− = a1a2, E3 = 1

2
(a†

1a1 + a
†
2a2 + 1),

F+ = a1a
†
2 , F− = a

†
1a2, F3 = 1

2
(a†

2a2 − a
†
1a1), (35)

U+ = 1

2
a
†
1

2
, U− = 1

2
a1

2, V+ = 1

2
a
†
2

2
, V− = 1

2
a2

2.

Equation (13) can also be realized as

H′ = 1 − µ

2
a
†
1a1 + 1 + µ

2
a
†
2a2 + ρ(a1a2 + a

†
1a

†
2 ) + υ(a1a

†
2 + a

†
1a2). (36)

Hereafter we leave out the index k for all the parameters and opera-
tors for convenience. So, for every k modes, utilizing the realization aj =
(mωjxj + ipj )/

√
2mωj , we can map a Hamiltonian of two-mode coupled har-

monic oscillators corresponding hamiltonian H of Equation (11),

H′ =
∑

j=1,2

[
p2

j

2m
+ ω2

j

2
mx2

j

]
+ λ1ω1ω2mx1x2 + λ2

p1p2

m
, (37)

with
√

ω1ω2

2
(λ1 − λ2) = ρ,

√
ω1ω2

2
(λ1 + λ2) = υ, 1 − 2ω1 = 2ω2 − 1 = µ.

(38)

Hamiltonian H and H′ should have the same energy spectrum, i.e., in low
excitation case, every k modes for XYZ antiferromagnetics in external magnetic
field can be mapped onto a two-dimension coupled harmonic oscillators with x-x
and p-p coupling, with the corresponding relation of the parameters Equation (38).
One can see that, the system parameters υ and ρ are linked to the coefficients of
x-x and p-p coupling; while the role of the parameters µ (external magnetic field
term) is to lift the energy degeneracy of the corresponding harmonic oscillators.
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6. CONCLUDING REMARKS

In this paper, based on the introduction of an algebraic diagonalization
method, the eigenstates of XYZ antiferromagnetics are revealed to be the
number squeezed states in the framework of linear spin-wave approximation.
Different from the traditional Bogoliubov-valatin transformation, we study the
problem using the algebraic diagonalization method. The characteristic of this
method lies in that, firstly, one can do calculation in virtue of the commutation
relations of Lie algebra instead of the Heisenberg algebra; Secondly, the energy
eigenstates are revealed to be squeezed number states, which had been studied in
quantum optics field (Kim, 1989; Nieto, 1997; Yuen, 1976), making it convenient
to study the physical properties of the system. It is shown that, the presence
of magnetic field results in the non-degeneracy of the two excited magnon;
even in the squeezed vacuum state, the spin direction on a sub-lattice is not
necessarily the same (this disordering in a certain extent is attributed to the
zero-point motion of the spin oscillator). Moreover, in the squeezed vacuum
state, the influence of the external magnetic field upon the agree of average
spin reversal of the two sub-lattice is absolutely the same. Some statistical
property of the squeezed vacuum state, the second-order correlation functions,
Mandel Q parameters, violation of CIS are also discussed. By virtue of the
algebra method, we illuminate that, XYZ antiferromagnetics under an external
magnetic field can be mapped onto a two-dimension coupled harmonic oscillators
with x-x and p-p coupling. Thus, the properties of the two-dimension coupled
harmonic oscillators with x-x and p-p coupling, can readily be connected to
the XYZ antiferromagnetics under an external magnetic field through adjusting
parameter. Besides, our method can also be used to treat the sub-ferromagnetic
case, and the case of existing anisotropic crystal magnetic field. The application
of our results in related physical fields, as well as the realization and employ-
ment of squeezed number states in other physical systems, leave for further studies.
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